首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3671篇
  免费   366篇
  国内免费   386篇
化学   3424篇
晶体学   9篇
力学   111篇
综合类   42篇
数学   619篇
物理学   218篇
  2024年   2篇
  2023年   18篇
  2022年   25篇
  2021年   54篇
  2020年   108篇
  2019年   77篇
  2018年   108篇
  2017年   142篇
  2016年   181篇
  2015年   155篇
  2014年   189篇
  2013年   306篇
  2012年   182篇
  2011年   231篇
  2010年   247篇
  2009年   239篇
  2008年   243篇
  2007年   239篇
  2006年   223篇
  2005年   217篇
  2004年   203篇
  2003年   156篇
  2002年   121篇
  2001年   119篇
  2000年   111篇
  1999年   73篇
  1998年   74篇
  1997年   72篇
  1996年   36篇
  1995年   49篇
  1994年   48篇
  1993年   48篇
  1992年   34篇
  1991年   14篇
  1990年   15篇
  1989年   21篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有4423条查询结果,搜索用时 609 毫秒
71.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   
72.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   
73.
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006  相似文献   
74.
Diblock copolymers of 5‐(methylphthalimide)bicyclo[2.2.1]hept‐2‐ene (NBMPI) and 1,5‐cyclooctadiene were synthesized by living ring‐opening metathesis polymerization with a well‐defined catalyst {RuCl2(CHPh)[P(C6H11)3]2}. Unhydrogenated diblock copolymers showed two glass transitions due to poly(NBMPI) and polybutadiene segments, such as two glass‐transition temperatures at ?86.5 and 115.3 °C for poly 1a and ?87.2 and 115.3 °C for poly 1b . However, only one melting temperature could be observed for hydrogenated copolymers, such as 119.8 °C for poly 2a and 121.7 °C for poly 2b . The unhydrogenated diblock copolymer with the longer poly(NBMPI) chain (poly 1a ; temperature at 10% mass loss = 400 °C) exhibited better thermal stability than the one with the shorter poly(NBMPI) chain (poly 1b ; temperature at 10% mass loss = 385 °C). Two kinds of hydrogenated diblock copolymers, poly 2a and poly 2b , exhibited relatively poor solubility but better thermal stability than unhydrogenated diblock copolymers because of the polyethylene segments. Poly[(hydrochloride quaternized 2‐norbornene‐5‐methyleneamine)‐b‐butadiene]‐1 (poly 3a ) was obtained after the hydrolysis and quaternization of poly 1a . Dynamic light scattering measurements indicated that the hydrodynamic diameters of the cationic copolymer (poly 3a ) in water (hydrodynamic diameter = 1580 nm without salt), methanol/water (4/96 v/v; hydrodynamic diameter = 1500 nm without salt), and tetrahydrofuran/water (4/96 v/v; hydrodynamic diameter = 1200 nm without salt) decreased with increasing salt (NaCl) concentration. The effect of temperature on the hydrodynamic diameter of hydrophobically modified poly 3a was also studied. The inflection point of the hydrodynamic diameter of poly 3a was observed at various polymer concentrations around 30 °C. The critical micelle concentration of hydrophobically modified poly 3a was observed at 0.018 g dL?1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2901–2911, 2006  相似文献   
75.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   
76.
Aqueous micellar solutions of ionic/neutral block copolymers have been studied by light scattering, small angle neutron scattering and small angle X-ray scattering. We made use of a polymer comprised of a short hydrophobic block (polyethylene-propylene) PEP and of a long polyelectrolytic block (polystyrene-sulfonate) PSSNa which has been shown previously to micellize in water. The apparent polydispersity of these micelles is studied in detail, showing the existence of a few large aggregates coexisting with the population of micelles. Solutions of micelles are found to order above some threshold in polymer concentration. The order is liquid-like, as demonstrated by the evolution with concentration of the peak observed in the structure factor (), and the degree of order is found to be identical over a large range of concentrations (up to 20 wt%). Consistent values of the aggregation number of the micelles are found by independent methods. The effect of salt addition on the order is found to be weak. Received: 19 June 1997 / Received in final form: 4 September 1997 / Accepted: 9 October 1997  相似文献   
77.
Consider a sequenceF 1,F 2,... of i.i.d. random transformations from a countable setV toV. Such a sequence describes a discrete-time stochastic flow onV, in which the position at timen of a particle that started at sitex isM n(x), whereM n =F n F n–1 F 1. We give conditions on the law ofF 1 for the sequence (M n) to be tight, and describe the possible limiting law. an example called the block charge model is introduced. The results can be formulated as a statement about the convergence in distribution of products of infinite-dimensional random stochastic matrices. In practical terms, they describe the possible equilibria for random motions of systems of particles on a countable set, without births or deaths, where each site may be occupied by any number of particles, and all particles at a particular site move together.  相似文献   
78.
The block copolymer of polystyrene-b-poly(butyl acrylate) (PSt-b-PBA) with a well-defined structure was synthesized by atom transfer radical polymerization (ATRP); its structure was characterized, and the living polymerization was also validated by gel permeation chromatography, Fourier transform infrared, and 1H NMR measurements. Then, the amphiphilic block copolymer of polystyrene-b-poly(acrylic acid) (PSt-b-PAA) has been prepared by hydrolysis of PSt-b-PBA, and copolymers of PSt-b-PAA with longer PSt blocks and shorter PAA blocks were obtained by controlling the conditions of ATRP polymerization. The reversed micelle solution of PSt-b-PAA in toluene was prepared by using the single-solvent dissolving method, and the reverse micellization behavior of PSt-b-PAA in toluene was mainly investigated in this paper. The fluorescent probe technique was used by using polar fluorescence compound N-(1-Naphthyl)ethylenediamine dihydrochloride (NEAH) as a polar fluorescent probe to study the reverse micellization behavior of PSt-b-PAA. It was found that the reverse micellization behaviors of PSt-b-PAA in toluene can be clearly revealed by using NEAH as a polar fluorescence probe, and the critical micelle concentrations (cmcs) can be well displayed. The experimental results showed that the self-assembling behavior of PSt-b-PAA in toluene depends apparently on the microstructure of the macromolecules and is also influenced by the temperature. For the copolymers of PSt-b-PAA with the same length of hydrophobic PSt blocks, the copolymer with a longer hydrophilic block PAA has lower cmc, and at higher temperature, the copolymer has lower cmc.  相似文献   
79.
80.
Tetronic®comprises X-shaped copolymers formed by four poly(propylene oxide) (PPO) andpoly(ethylene oxide) (PEO) block chains bonded to an ethylene diamine centralgroup. Micellization behaviour of three representative Tetronics (T304, T904and T1307) was characterized to gain an insight into the interactions betweenthe copolymer unimers and the state of water in their solutions. The enthalpyof demicellization, recorded at 37°C in an isoperibol microcalorimeter,indicated that the process was in all cases exothermic and the enthalpy rankedin the order T1307≥T904>>T304. Micellization is entropy-driven owing tohydrophobic interactions between the PPO chains.DSC analysisshowed that the crystallization and melting peaks of the free water remainingin T304 and T904 solutions were progressively shifted toward lower temperaturesas the surfactant proportion increased, owing to a colligative effect. Boundwater corresponded to 3 water molecules per EO repeating unit. In the caseof T1307, which has longer PEO chains, a splitting of the melting peak wasobserved, one peak appearing around 0°C due to free water and anotherat –15°C due to interfacial water. As T1307 proportion raised, theenthalpy of the former decreased, whilst the enthalpy of the latter increased.In 40% T1307 solutions, interfacial water overcame the proportion of freewater; there being 1 interfacial and 3 bound water molecules per EO repeatingunit. Gaussian deconvolution of FTIR spectra also enabled to characterizethe evolution of free water as a function of Tetronic proportion. The dependenceof micellization and water interaction behaviour on Tetronics structure shouldbe taken into account to use these copolymers as drug solubilizers and micellarcarriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号